Evaluate
-\frac{363}{14}\approx -25.928571429
Share
Copied to clipboard
\int _{-1}^{2}\frac{-\left(x^{3}+2\right)x^{4}}{x}\mathrm{d}x
Express \left(-\frac{x^{3}+2}{x}\right)x^{4} as a single fraction.
\int _{-1}^{2}-x^{3}\left(x^{3}+2\right)\mathrm{d}x
Cancel out x in both numerator and denominator.
\int _{-1}^{2}-x^{6}-2x^{3}\mathrm{d}x
Use the distributive property to multiply -x^{3} by x^{3}+2.
\int -x^{6}-2x^{3}\mathrm{d}x
Evaluate the indefinite integral first.
\int -x^{6}\mathrm{d}x+\int -2x^{3}\mathrm{d}x
Integrate the sum term by term.
-\int x^{6}\mathrm{d}x-2\int x^{3}\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{7}}{7}-2\int x^{3}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{6}\mathrm{d}x with \frac{x^{7}}{7}. Multiply -1 times \frac{x^{7}}{7}.
-\frac{x^{7}}{7}-\frac{x^{4}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -2 times \frac{x^{4}}{4}.
-\frac{2^{7}}{7}-\frac{2^{4}}{2}-\left(-\frac{\left(-1\right)^{7}}{7}-\frac{\left(-1\right)^{4}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{363}{14}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}