Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-1}^{1}\left(-3-x\right)\left(x+4\right)\mathrm{d}x
To find the opposite of 3+x, find the opposite of each term.
\int _{-1}^{1}-3x-12-x^{2}-4x\mathrm{d}x
Apply the distributive property by multiplying each term of -3-x by each term of x+4.
\int _{-1}^{1}-7x-12-x^{2}\mathrm{d}x
Combine -3x and -4x to get -7x.
\int -7x-12-x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int -7x\mathrm{d}x+\int -12\mathrm{d}x+\int -x^{2}\mathrm{d}x
Integrate the sum term by term.
-7\int x\mathrm{d}x+\int -12\mathrm{d}x-\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{7x^{2}}{2}+\int -12\mathrm{d}x-\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -7 times \frac{x^{2}}{2}.
-\frac{7x^{2}}{2}-12x-\int x^{2}\mathrm{d}x
Find the integral of -12 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{7x^{2}}{2}-12x-\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
-\frac{7}{2}\times 1^{2}-12-\frac{1^{3}}{3}-\left(-\frac{7}{2}\left(-1\right)^{2}-12\left(-1\right)-\frac{\left(-1\right)^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{74}{3}
Simplify.