Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-1}^{0}x^{3}-2x+x^{2}-2\mathrm{d}x
Use the distributive property to multiply x+1 by x^{2}-2.
\int x^{3}-2x+x^{2}-2\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{3}\mathrm{d}x+\int -2x\mathrm{d}x+\int x^{2}\mathrm{d}x+\int -2\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x-2\int x\mathrm{d}x+\int x^{2}\mathrm{d}x+\int -2\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}-2\int x\mathrm{d}x+\int x^{2}\mathrm{d}x+\int -2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}-x^{2}+\int x^{2}\mathrm{d}x+\int -2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -2 times \frac{x^{2}}{2}.
\frac{x^{4}}{4}-x^{2}+\frac{x^{3}}{3}+\int -2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{4}}{4}-x^{2}+\frac{x^{3}}{3}-2x
Find the integral of -2 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{0^{4}}{4}-0^{2}+\frac{0^{3}}{3}-2\times 0-\left(\frac{\left(-1\right)^{4}}{4}-\left(-1\right)^{2}+\frac{\left(-1\right)^{3}}{3}-2\left(-1\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{11}{12}
Simplify.