Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 3\sin(x)+4\cos(x)+2e^{x}\mathrm{d}x
Evaluate the indefinite integral first.
\int 3\sin(x)\mathrm{d}x+\int 4\cos(x)\mathrm{d}x+\int 2e^{x}\mathrm{d}x
Integrate the sum term by term.
3\int \sin(x)\mathrm{d}x+4\int \cos(x)\mathrm{d}x+2\int e^{x}\mathrm{d}x
Factor out the constant in each of the terms.
-3\cos(x)+4\int \cos(x)\mathrm{d}x+2\int e^{x}\mathrm{d}x
Use \int \sin(x)\mathrm{d}x=-\cos(x) from the table of common integrals to obtain the result. Multiply 3 times -\cos(x).
-3\cos(x)+4\sin(x)+2\int e^{x}\mathrm{d}x
Use \int \cos(x)\mathrm{d}x=\sin(x) from the table of common integrals to obtain the result.
-3\cos(x)+4\sin(x)+2e^{x}
Use \int e^{x}\mathrm{d}x=e^{x} from the table of common integrals to obtain the result.
-3\cos(\pi )+4\sin(\pi )+2e^{\pi }-\left(-3\cos(-\pi )+4\sin(-\pi )+2e^{-\pi }\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
2e^{\pi }-\frac{2}{e^{\pi }}
Simplify.