Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -3x^{2}+2-3x\mathrm{d}x
Evaluate the indefinite integral first.
\int -3x^{2}\mathrm{d}x+\int 2\mathrm{d}x+\int -3x\mathrm{d}x
Integrate the sum term by term.
-3\int x^{2}\mathrm{d}x+\int 2\mathrm{d}x-3\int x\mathrm{d}x
Factor out the constant in each of the terms.
-x^{3}+\int 2\mathrm{d}x-3\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -3 times \frac{x^{3}}{3}.
-x^{3}+2x-3\int x\mathrm{d}x
Find the integral of 2 using the table of common integrals rule \int a\mathrm{d}x=ax.
-x^{3}+2x-\frac{3x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -3 times \frac{x^{2}}{2}.
-\left(\frac{1}{6}\times 33^{\frac{1}{2}}-\frac{1}{2}\right)^{3}+2\left(\frac{1}{6}\times 33^{\frac{1}{2}}-\frac{1}{2}\right)-\frac{3}{2}\left(\frac{1}{6}\times 33^{\frac{1}{2}}-\frac{1}{2}\right)^{2}-\left(-\left(-\frac{1}{6}\times 38^{\frac{1}{2}}-\frac{1}{2}\right)^{3}+2\left(-\frac{1}{6}\times 38^{\frac{1}{2}}-\frac{1}{2}\right)-\frac{3}{2}\left(-\frac{1}{6}\times 38^{\frac{1}{2}}-\frac{1}{2}\right)^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{11\sqrt{33}}{36}+\frac{61\sqrt{38}}{216}
Simplify.