Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 5x-x^{2}-\frac{9}{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int 5x\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int -\frac{9}{4}\mathrm{d}x
Integrate the sum term by term.
5\int x\mathrm{d}x-\int x^{2}\mathrm{d}x+\int -\frac{9}{4}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{5x^{2}}{2}-\int x^{2}\mathrm{d}x+\int -\frac{9}{4}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 5 times \frac{x^{2}}{2}.
\frac{5x^{2}}{2}-\frac{x^{3}}{3}+\int -\frac{9}{4}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
\frac{5x^{2}}{2}-\frac{x^{3}}{3}-\frac{9x}{4}
Find the integral of -\frac{9}{4} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{5}{2}\times \left(\frac{9}{2}\right)^{2}-\frac{\left(\frac{9}{2}\right)^{3}}{3}-\frac{9}{4}\times \frac{9}{2}-\left(\frac{5}{2}\times \left(\frac{3}{2}\right)^{2}-\frac{\left(\frac{3}{2}\right)^{3}}{3}-\frac{9}{4}\times \frac{3}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
9
Simplify.