Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{1}{u^{4}}-\frac{1}{u^{2}}\mathrm{d}u
Evaluate the indefinite integral first.
\int \frac{1}{u^{4}}\mathrm{d}u+\int -\frac{1}{u^{2}}\mathrm{d}u
Integrate the sum term by term.
\int \frac{1}{u^{4}}\mathrm{d}u-\int \frac{1}{u^{2}}\mathrm{d}u
Factor out the constant in each of the terms.
-\frac{1}{3u^{3}}-\int \frac{1}{u^{2}}\mathrm{d}u
Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{u^{4}}\mathrm{d}u with -\frac{1}{3u^{3}}.
-\frac{1}{3u^{3}}+\frac{1}{u}
Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{u^{2}}\mathrm{d}u with -\frac{1}{u}. Multiply -1 times -\frac{1}{u}.
-\frac{1^{-3}}{3}+1^{-1}-\left(-\frac{\left(\frac{1}{2}\right)^{-3}}{3}+\left(\frac{1}{2}\right)^{-1}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{4}{3}
Simplify.