Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 90x^{8}-90x^{9}\mathrm{d}x
Use the distributive property to multiply 90x^{8} by 1-x.
\int 90x^{8}\mathrm{d}x+\int -90x^{9}\mathrm{d}x
Integrate the sum term by term.
90\int x^{8}\mathrm{d}x-90\int x^{9}\mathrm{d}x
Factor out the constant in each of the terms.
10x^{9}-90\int x^{9}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{8}\mathrm{d}x with \frac{x^{9}}{9}. Multiply 90 times \frac{x^{9}}{9}.
10x^{9}-9x^{10}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{9}\mathrm{d}x with \frac{x^{10}}{10}. Multiply -90 times \frac{x^{10}}{10}.
10x^{9}-9x^{10}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.