Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 4x^{3}-16x-\left(2x^{2}-3\right)\times 2x\mathrm{d}x
Use the distributive property to multiply 4x by x^{2}-4.
\int 4x^{3}-16x-\left(4x^{2}-6\right)x\mathrm{d}x
Use the distributive property to multiply 2x^{2}-3 by 2.
\int 4x^{3}-16x-\left(4x^{3}-6x\right)\mathrm{d}x
Use the distributive property to multiply 4x^{2}-6 by x.
\int 4x^{3}-16x-4x^{3}+6x\mathrm{d}x
To find the opposite of 4x^{3}-6x, find the opposite of each term.
\int -16x+6x\mathrm{d}x
Combine 4x^{3} and -4x^{3} to get 0.
\int -10x\mathrm{d}x
Combine -16x and 6x to get -10x.
-10\int x\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
-5x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -10 times \frac{x^{2}}{2}.
-5x^{2}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.