Evaluate
\frac{2r^{10}}{5}+\frac{108r^{5}}{5}+С
Differentiate w.r.t. r
4r^{4}\left(r^{5}+27\right)
Share
Copied to clipboard
\int 108r^{4}+4r^{9}\mathrm{d}r
Use the distributive property to multiply 4r^{4} by 27+r^{5}.
\int 108r^{4}\mathrm{d}r+\int 4r^{9}\mathrm{d}r
Integrate the sum term by term.
108\int r^{4}\mathrm{d}r+4\int r^{9}\mathrm{d}r
Factor out the constant in each of the terms.
\frac{108r^{5}}{5}+4\int r^{9}\mathrm{d}r
Since \int r^{k}\mathrm{d}r=\frac{r^{k+1}}{k+1} for k\neq -1, replace \int r^{4}\mathrm{d}r with \frac{r^{5}}{5}. Multiply 108 times \frac{r^{5}}{5}.
\frac{108r^{5}+2r^{10}}{5}
Since \int r^{k}\mathrm{d}r=\frac{r^{k+1}}{k+1} for k\neq -1, replace \int r^{9}\mathrm{d}r with \frac{r^{10}}{10}. Multiply 4 times \frac{r^{10}}{10}.
\frac{108r^{5}}{5}+\frac{2r^{10}}{5}+С
If F\left(r\right) is an antiderivative of f\left(r\right), then the set of all antiderivatives of f\left(r\right) is given by F\left(r\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}