Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. r
Tick mark Image

Similar Problems from Web Search

Share

\int 108r^{4}+4r^{9}\mathrm{d}r
Use the distributive property to multiply 4r^{4} by 27+r^{5}.
\int 108r^{4}\mathrm{d}r+\int 4r^{9}\mathrm{d}r
Integrate the sum term by term.
108\int r^{4}\mathrm{d}r+4\int r^{9}\mathrm{d}r
Factor out the constant in each of the terms.
\frac{108r^{5}}{5}+4\int r^{9}\mathrm{d}r
Since \int r^{k}\mathrm{d}r=\frac{r^{k+1}}{k+1} for k\neq -1, replace \int r^{4}\mathrm{d}r with \frac{r^{5}}{5}. Multiply 108 times \frac{r^{5}}{5}.
\frac{108r^{5}+2r^{10}}{5}
Since \int r^{k}\mathrm{d}r=\frac{r^{k+1}}{k+1} for k\neq -1, replace \int r^{9}\mathrm{d}r with \frac{r^{10}}{10}. Multiply 4 times \frac{r^{10}}{10}.
\frac{108r^{5}}{5}+\frac{2r^{10}}{5}+С
If F\left(r\right) is an antiderivative of f\left(r\right), then the set of all antiderivatives of f\left(r\right) is given by F\left(r\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.