Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 361\mathrm{d}x+\int -19\sin(x)\mathrm{d}x
Integrate the sum term by term.
\int 361\mathrm{d}x-19\int \sin(x)\mathrm{d}x
Factor out the constant in each of the terms.
19\left(19x-\int \sin(x)\mathrm{d}x\right)
Find the integral of 361 using the table of common integrals rule \int a\mathrm{d}x=ax.
19\left(19x+\cos(x)\right)
Use \int \sin(x)\mathrm{d}x=-\cos(x) from the table of common integrals to obtain the result. Multiply -19 times -\cos(x).
361x+19\cos(x)+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.