Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\int \frac{3^{7}}{\left(5\times 3-7\times 2+2\right)^{6}}+7\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 2 and 5 to get 7.
\int \frac{2187}{\left(5\times 3-7\times 2+2\right)^{6}}+7\mathrm{d}x
Calculate 3 to the power of 7 and get 2187.
\int \frac{2187}{\left(15-7\times 2+2\right)^{6}}+7\mathrm{d}x
Multiply 5 and 3 to get 15.
\int \frac{2187}{\left(15-14+2\right)^{6}}+7\mathrm{d}x
Multiply 7 and 2 to get 14.
\int \frac{2187}{\left(1+2\right)^{6}}+7\mathrm{d}x
Subtract 14 from 15 to get 1.
\int \frac{2187}{3^{6}}+7\mathrm{d}x
Add 1 and 2 to get 3.
\int \frac{2187}{729}+7\mathrm{d}x
Calculate 3 to the power of 6 and get 729.
\int 3+7\mathrm{d}x
Divide 2187 by 729 to get 3.
\int 10\mathrm{d}x
Add 3 and 7 to get 10.
10x
Find the integral of 10 using the table of common integrals rule \int a\mathrm{d}x=ax.
10x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.