Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 10x\left(25\left(x^{2}\right)^{2}+10x^{2}+1\right)\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x^{2}+1\right)^{2}.
\int 10x\left(25x^{4}+10x^{2}+1\right)\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int 250x^{5}+100x^{3}+10x\mathrm{d}x
Use the distributive property to multiply 10x by 25x^{4}+10x^{2}+1.
\int 250x^{5}\mathrm{d}x+\int 100x^{3}\mathrm{d}x+\int 10x\mathrm{d}x
Integrate the sum term by term.
250\int x^{5}\mathrm{d}x+100\int x^{3}\mathrm{d}x+10\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{125x^{6}}{3}+100\int x^{3}\mathrm{d}x+10\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply 250 times \frac{x^{6}}{6}.
\frac{125x^{6}}{3}+25x^{4}+10\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 100 times \frac{x^{4}}{4}.
\frac{125x^{6}}{3}+25x^{4}+5x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 10 times \frac{x^{2}}{2}.
5x^{2}+25x^{4}+\frac{125x^{6}}{3}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.