Evaluate
\frac{125x^{6}}{3}+25x^{4}+5x^{2}+С
Differentiate w.r.t. x
10x\left(5x^{2}+1\right)^{2}
Share
Copied to clipboard
\int 10x\left(25\left(x^{2}\right)^{2}+10x^{2}+1\right)\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x^{2}+1\right)^{2}.
\int 10x\left(25x^{4}+10x^{2}+1\right)\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int 250x^{5}+100x^{3}+10x\mathrm{d}x
Use the distributive property to multiply 10x by 25x^{4}+10x^{2}+1.
\int 250x^{5}\mathrm{d}x+\int 100x^{3}\mathrm{d}x+\int 10x\mathrm{d}x
Integrate the sum term by term.
250\int x^{5}\mathrm{d}x+100\int x^{3}\mathrm{d}x+10\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{125x^{6}}{3}+100\int x^{3}\mathrm{d}x+10\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply 250 times \frac{x^{6}}{6}.
\frac{125x^{6}}{3}+25x^{4}+10\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 100 times \frac{x^{4}}{4}.
\frac{125x^{6}}{3}+25x^{4}+5x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 10 times \frac{x^{2}}{2}.
5x^{2}+25x^{4}+\frac{125x^{6}}{3}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}