Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int x^{3}-15x^{2}+75x-125\mathrm{d}x
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-5\right)^{3}.
\int x^{3}\mathrm{d}x+\int -15x^{2}\mathrm{d}x+\int 75x\mathrm{d}x+\int -125\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x-15\int x^{2}\mathrm{d}x+75\int x\mathrm{d}x+\int -125\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}-15\int x^{2}\mathrm{d}x+75\int x\mathrm{d}x+\int -125\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}-5x^{3}+75\int x\mathrm{d}x+\int -125\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -15 times \frac{x^{3}}{3}.
\frac{x^{4}}{4}-5x^{3}+\frac{75x^{2}}{2}+\int -125\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 75 times \frac{x^{2}}{2}.
\frac{x^{4}}{4}-5x^{3}+\frac{75x^{2}}{2}-125x
Find the integral of -125 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{x^{4}}{4}-5x^{3}+\frac{75x^{2}}{2}-125x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.