Evaluate
\frac{x^{8}}{8}-\frac{x^{6}}{2}+\frac{3x^{4}}{4}-\frac{x^{2}}{2}+С
Differentiate w.r.t. x
x\left(x^{2}-1\right)^{3}
Share
Copied to clipboard
\int \left(x^{3}-3x^{2}+3x-1\right)\left(x+1\right)^{3}x\mathrm{d}x
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
\int \left(x^{3}-3x^{2}+3x-1\right)\left(x^{3}+3x^{2}+3x+1\right)x\mathrm{d}x
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+1\right)^{3}.
\int \left(x^{6}-3x^{4}+3x^{2}-1\right)x\mathrm{d}x
Use the distributive property to multiply x^{3}-3x^{2}+3x-1 by x^{3}+3x^{2}+3x+1 and combine like terms.
\int x^{7}-3x^{5}+3x^{3}-x\mathrm{d}x
Use the distributive property to multiply x^{6}-3x^{4}+3x^{2}-1 by x.
\int x^{7}\mathrm{d}x+\int -3x^{5}\mathrm{d}x+\int 3x^{3}\mathrm{d}x+\int -x\mathrm{d}x
Integrate the sum term by term.
\int x^{7}\mathrm{d}x-3\int x^{5}\mathrm{d}x+3\int x^{3}\mathrm{d}x-\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{8}}{8}-3\int x^{5}\mathrm{d}x+3\int x^{3}\mathrm{d}x-\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{7}\mathrm{d}x with \frac{x^{8}}{8}.
\frac{x^{8}}{8}-\frac{x^{6}}{2}+3\int x^{3}\mathrm{d}x-\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply -3 times \frac{x^{6}}{6}.
\frac{x^{8}}{8}-\frac{x^{6}}{2}+\frac{3x^{4}}{4}-\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 3 times \frac{x^{4}}{4}.
\frac{x^{8}}{8}-\frac{x^{6}}{2}+\frac{3x^{4}}{4}-\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
-\frac{x^{2}}{2}+\frac{3x^{4}}{4}-\frac{x^{6}}{2}+\frac{x^{8}}{8}
Simplify.
-\frac{x^{2}}{2}+\frac{3x^{4}}{4}-\frac{x^{6}}{2}+\frac{x^{8}}{8}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}