Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int x^{8}\mathrm{d}x+\int -\frac{x^{6}}{4}\mathrm{d}x+\int 3x^{2}\mathrm{d}x+\int 100\mathrm{d}x
Integrate the sum term by term.
\int x^{8}\mathrm{d}x-\frac{\int x^{6}\mathrm{d}x}{4}+3\int x^{2}\mathrm{d}x+\int 100\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{9}}{9}-\frac{\int x^{6}\mathrm{d}x}{4}+3\int x^{2}\mathrm{d}x+\int 100\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{8}\mathrm{d}x with \frac{x^{9}}{9}.
\frac{x^{9}}{9}-\frac{x^{7}}{28}+3\int x^{2}\mathrm{d}x+\int 100\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{6}\mathrm{d}x with \frac{x^{7}}{7}. Multiply -\frac{1}{4} times \frac{x^{7}}{7}.
\frac{x^{9}}{9}-\frac{x^{7}}{28}+x^{3}+\int 100\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 3 times \frac{x^{3}}{3}.
\frac{x^{9}}{9}-\frac{x^{7}}{28}+x^{3}+100x
Find the integral of 100 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{x^{9}}{9}-\frac{x^{7}}{28}+x^{3}+100x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.