Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 3x^{5}-4x^{3}+x\mathrm{d}x
Use the distributive property to multiply x^{3}-x by 3x^{2}-1 and combine like terms.
\int 3x^{5}\mathrm{d}x+\int -4x^{3}\mathrm{d}x+\int x\mathrm{d}x
Integrate the sum term by term.
3\int x^{5}\mathrm{d}x-4\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{6}}{2}-4\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply 3 times \frac{x^{6}}{6}.
\frac{x^{6}}{2}-x^{4}+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -4 times \frac{x^{4}}{4}.
\frac{x^{6}}{2}-x^{4}+\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{6}}{2}-x^{4}+\frac{x^{2}}{2}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.