Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \left(x^{3}\right)^{3}+6\left(x^{3}\right)^{2}+12x^{3}+8\mathrm{d}x
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x^{3}+2\right)^{3}.
\int x^{9}+6\left(x^{3}\right)^{2}+12x^{3}+8\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\int x^{9}+6x^{6}+12x^{3}+8\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\int x^{9}\mathrm{d}x+\int 6x^{6}\mathrm{d}x+\int 12x^{3}\mathrm{d}x+\int 8\mathrm{d}x
Integrate the sum term by term.
\int x^{9}\mathrm{d}x+6\int x^{6}\mathrm{d}x+12\int x^{3}\mathrm{d}x+\int 8\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{10}}{10}+6\int x^{6}\mathrm{d}x+12\int x^{3}\mathrm{d}x+\int 8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{9}\mathrm{d}x with \frac{x^{10}}{10}.
\frac{x^{10}}{10}+\frac{6x^{7}}{7}+12\int x^{3}\mathrm{d}x+\int 8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{6}\mathrm{d}x with \frac{x^{7}}{7}. Multiply 6 times \frac{x^{7}}{7}.
\frac{x^{10}}{10}+\frac{6x^{7}}{7}+3x^{4}+\int 8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 12 times \frac{x^{4}}{4}.
\frac{x^{10}}{10}+\frac{6x^{7}}{7}+3x^{4}+8x
Find the integral of 8 using the table of common integrals rule \int a\mathrm{d}x=ax.
8x+3x^{4}+\frac{6x^{7}}{7}+\frac{x^{10}}{10}
Simplify.
8x+3x^{4}+\frac{6x^{7}}{7}+\frac{x^{10}}{10}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.