Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \left(2x^{2}-x+2x-1\right)\left(x+9\right)\mathrm{d}x
Apply the distributive property by multiplying each term of x+1 by each term of 2x-1.
\int \left(2x^{2}+x-1\right)\left(x+9\right)\mathrm{d}x
Combine -x and 2x to get x.
\int 2x^{3}+18x^{2}+x^{2}+9x-x-9\mathrm{d}x
Apply the distributive property by multiplying each term of 2x^{2}+x-1 by each term of x+9.
\int 2x^{3}+19x^{2}+9x-x-9\mathrm{d}x
Combine 18x^{2} and x^{2} to get 19x^{2}.
\int 2x^{3}+19x^{2}+8x-9\mathrm{d}x
Combine 9x and -x to get 8x.
\int 2x^{3}\mathrm{d}x+\int 19x^{2}\mathrm{d}x+\int 8x\mathrm{d}x+\int -9\mathrm{d}x
Integrate the sum term by term.
2\int x^{3}\mathrm{d}x+19\int x^{2}\mathrm{d}x+8\int x\mathrm{d}x+\int -9\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{2}+19\int x^{2}\mathrm{d}x+8\int x\mathrm{d}x+\int -9\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 2 times \frac{x^{4}}{4}.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+8\int x\mathrm{d}x+\int -9\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 19 times \frac{x^{3}}{3}.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+4x^{2}+\int -9\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 8 times \frac{x^{2}}{2}.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+4x^{2}-9x
Find the integral of -9 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+4x^{2}-9x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.