Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 4^{2}x^{2}\left(y^{2}\right)^{2}\mathrm{d}x
Expand \left(4xy^{2}\right)^{2}.
\int 4^{2}x^{2}y^{4}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int 16x^{2}y^{4}\mathrm{d}x
Calculate 4 to the power of 2 and get 16.
16y^{4}\int x^{2}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
16y^{4}\times \frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{16y^{4}x^{3}}{3}
Simplify.
\frac{16y^{4}x^{3}}{3}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.