Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 16x^{2}-56x+49\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-7\right)^{2}.
\int 16x^{2}\mathrm{d}x+\int -56x\mathrm{d}x+\int 49\mathrm{d}x
Integrate the sum term by term.
16\int x^{2}\mathrm{d}x-56\int x\mathrm{d}x+\int 49\mathrm{d}x
Factor out the constant in each of the terms.
\frac{16x^{3}}{3}-56\int x\mathrm{d}x+\int 49\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 16 times \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-28x^{2}+\int 49\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -56 times \frac{x^{2}}{2}.
\frac{16x^{3}}{3}-28x^{2}+49x
Find the integral of 49 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{16x^{3}}{3}-28x^{2}+49x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.