Evaluate
\frac{x^{6}}{2}+3x^{5}+\frac{9x^{4}}{2}+x^{3}+3x^{2}+С
Differentiate w.r.t. x
3x\left(x+2\right)\left(x^{3}+3x^{2}+1\right)
Quiz
Integration
5 problems similar to:
\int ( 3 x ^ { 2 } + 6 x ) ( x ^ { 3 } + 3 x ^ { 2 } + 1 ) d x
Share
Copied to clipboard
\int 3x^{5}+15x^{4}+3x^{2}+18x^{3}+6x\mathrm{d}x
Use the distributive property to multiply 3x^{2}+6x by x^{3}+3x^{2}+1 and combine like terms.
\int 3x^{5}\mathrm{d}x+\int 15x^{4}\mathrm{d}x+\int 3x^{2}\mathrm{d}x+\int 18x^{3}\mathrm{d}x+\int 6x\mathrm{d}x
Integrate the sum term by term.
3\int x^{5}\mathrm{d}x+15\int x^{4}\mathrm{d}x+3\int x^{2}\mathrm{d}x+18\int x^{3}\mathrm{d}x+6\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{6}}{2}+15\int x^{4}\mathrm{d}x+3\int x^{2}\mathrm{d}x+18\int x^{3}\mathrm{d}x+6\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply 3 times \frac{x^{6}}{6}.
\frac{x^{6}}{2}+3x^{5}+3\int x^{2}\mathrm{d}x+18\int x^{3}\mathrm{d}x+6\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 15 times \frac{x^{5}}{5}.
\frac{x^{6}}{2}+3x^{5}+x^{3}+18\int x^{3}\mathrm{d}x+6\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 3 times \frac{x^{3}}{3}.
\frac{x^{6}}{2}+3x^{5}+x^{3}+\frac{9x^{4}}{2}+6\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 18 times \frac{x^{4}}{4}.
\frac{x^{6}}{2}+3x^{5}+x^{3}+\frac{9x^{4}}{2}+3x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 6 times \frac{x^{2}}{2}.
\frac{x^{6}}{2}+3x^{5}+x^{3}+\frac{9x^{4}}{2}+3x^{2}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}