Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \left(2x+1\right)\left(-1\right)\mathrm{d}x
Get the value of \cos(\pi ) from trigonometric values table.
\int -2x-1\mathrm{d}x
Use the distributive property to multiply 2x+1 by -1.
\int -2x\mathrm{d}x+\int -1\mathrm{d}x
Integrate the sum term by term.
-2\int x\mathrm{d}x+\int -1\mathrm{d}x
Factor out the constant in each of the terms.
-x^{2}+\int -1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -2 times \frac{x^{2}}{2}.
-x^{2}-x
Find the integral of -1 using the table of common integrals rule \int a\mathrm{d}x=ax.
-x^{2}-x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.