Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 1+2\sqrt{x}+\left(\sqrt{x}\right)^{2}-\left(1+x\right)^{2}\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{x}\right)^{2}.
\int 1+2\sqrt{x}+x-\left(1+x\right)^{2}\mathrm{d}x
Calculate \sqrt{x} to the power of 2 and get x.
\int 1+2\sqrt{x}+x-\left(1+2x+x^{2}\right)\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
\int 1+2\sqrt{x}+x-1-2x-x^{2}\mathrm{d}x
To find the opposite of 1+2x+x^{2}, find the opposite of each term.
\int 2\sqrt{x}+x-2x-x^{2}\mathrm{d}x
Subtract 1 from 1 to get 0.
\int 2\sqrt{x}-x-x^{2}\mathrm{d}x
Combine x and -2x to get -x.
\int 2\sqrt{x}\mathrm{d}x+\int -x\mathrm{d}x+\int -x^{2}\mathrm{d}x
Integrate the sum term by term.
2\int \sqrt{x}\mathrm{d}x-\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{4x^{\frac{3}{2}}}{3}-\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify. Multiply 2 times \frac{2x^{\frac{3}{2}}}{3}.
\frac{4x^{\frac{3}{2}}}{3}-\frac{x^{2}}{2}-\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
\frac{4x^{\frac{3}{2}}}{3}-\frac{x^{2}}{2}-\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
\frac{4x^{\frac{3}{2}}}{3}-\frac{x^{2}}{2}-\frac{x^{3}}{3}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.