Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\left(\left(\frac{\sin(\theta )}{\cos(\theta )}\right)^{2}+\left(\frac{\cos(\theta )}{\sin(\theta )}\right)^{2}\right)x
Find the integral of \left(\frac{\sin(\theta )}{\cos(\theta )}\right)^{2}+\left(\frac{\cos(\theta )}{\sin(\theta )}\right)^{2} using the table of common integrals rule \int a\mathrm{d}x=ax.
\left(\frac{\left(\sin(\theta )\right)^{2}}{\left(\cos(\theta )\right)^{2}}+\frac{\left(\cos(\theta )\right)^{2}}{\left(\sin(\theta )\right)^{2}}\right)x
Simplify.
\begin{matrix}\left(\frac{\left(\sin(\theta )\right)^{2}}{\left(\cos(\theta )\right)^{2}}+\frac{\left(\cos(\theta )\right)^{2}}{\left(\sin(\theta )\right)^{2}}\right)x+С_{3},&\end{matrix}
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.