Evaluate
\frac{4x\left(\left(\sin(\theta )\right)^{4}+\left(\cos(\theta )\right)^{4}\right)}{\left(\sin(2\theta )\right)^{2}}+С
\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\frac{\pi n_{1}}{2}
Differentiate w.r.t. x
\frac{4\left(\left(\sin(\theta )\right)^{4}+\left(\cos(\theta )\right)^{4}\right)}{\left(\sin(2\theta )\right)^{2}}
Share
Copied to clipboard
\left(\left(\frac{\sin(\theta )}{\cos(\theta )}\right)^{2}+\left(\frac{\cos(\theta )}{\sin(\theta )}\right)^{2}\right)x
Find the integral of \left(\frac{\sin(\theta )}{\cos(\theta )}\right)^{2}+\left(\frac{\cos(\theta )}{\sin(\theta )}\right)^{2} using the table of common integrals rule \int a\mathrm{d}x=ax.
\left(\frac{\left(\sin(\theta )\right)^{2}}{\left(\cos(\theta )\right)^{2}}+\frac{\left(\cos(\theta )\right)^{2}}{\left(\sin(\theta )\right)^{2}}\right)x
Simplify.
\begin{matrix}\left(\frac{\left(\sin(\theta )\right)^{2}}{\left(\cos(\theta )\right)^{2}}+\frac{\left(\cos(\theta )\right)^{2}}{\left(\sin(\theta )\right)^{2}}\right)x+С_{3},&\end{matrix}
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}