Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \sqrt{x}+512\sqrt{x}\mathrm{d}x
Calculate 8 to the power of 3 and get 512.
\int 513\sqrt{x}\mathrm{d}x
Combine \sqrt{x} and 512\sqrt{x} to get 513\sqrt{x}.
513\int \sqrt{x}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
342x^{\frac{3}{2}}
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify. Multiply 513 times \frac{2x^{\frac{3}{2}}}{3}.
342x^{\frac{3}{2}}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.