Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\int \sin(x)\mathrm{d}x+\int \sqrt{x}\mathrm{d}x+\int -e\mathrm{d}x
Integrate the sum term by term.
\int \sin(x)\mathrm{d}x+\int \sqrt{x}\mathrm{d}x-\int e\mathrm{d}x
Factor out the constant in each of the terms.
-\cos(x)+\int \sqrt{x}\mathrm{d}x-\int e\mathrm{d}x
Use \int \sin(x)\mathrm{d}x=-\cos(x) from the table of common integrals to obtain the result.
-\cos(x)+\frac{2x^{\frac{3}{2}}}{3}-\int e\mathrm{d}x
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify.
-\cos(x)+\frac{2x^{\frac{3}{2}}}{3}-ex
Find the integral of e using the table of common integrals rule \int a\mathrm{d}x=ax.
-\cos(x)+\frac{2x^{\frac{3}{2}}}{3}-ex+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.