Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \left(\frac{9}{14}\right)^{2}+\left(\frac{3}{4}-\frac{3}{7}\right)^{2}\mathrm{d}x
Subtract \frac{1}{2} from \frac{8}{7} to get \frac{9}{14}.
\int \frac{81}{196}+\left(\frac{3}{4}-\frac{3}{7}\right)^{2}\mathrm{d}x
Calculate \frac{9}{14} to the power of 2 and get \frac{81}{196}.
\int \frac{81}{196}+\left(\frac{9}{28}\right)^{2}\mathrm{d}x
Subtract \frac{3}{7} from \frac{3}{4} to get \frac{9}{28}.
\int \frac{81}{196}+\frac{81}{784}\mathrm{d}x
Calculate \frac{9}{28} to the power of 2 and get \frac{81}{784}.
\int \frac{405}{784}\mathrm{d}x
Add \frac{81}{196} and \frac{81}{784} to get \frac{405}{784}.
\frac{405x}{784}
Find the integral of \frac{405}{784} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{405x}{784}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.