Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{1}{x}\mathrm{d}x+\int -\sin(x)\mathrm{d}x+\int 3\mathrm{d}x
Integrate the sum term by term.
\int \frac{1}{x}\mathrm{d}x-\int \sin(x)\mathrm{d}x+\int 3\mathrm{d}x
Factor out the constant in each of the terms.
\ln(|x|)-\int \sin(x)\mathrm{d}x+\int 3\mathrm{d}x
Use \int \frac{1}{x}\mathrm{d}x=\ln(|x|) from the table of common integrals to obtain the result.
\ln(|x|)+\cos(x)+\int 3\mathrm{d}x
Use \int \sin(x)\mathrm{d}x=-\cos(x) from the table of common integrals to obtain the result. Multiply -1 times -\cos(x).
\ln(|x|)+\cos(x)+3x
Find the integral of 3 using the table of common integrals rule \int a\mathrm{d}x=ax.
\ln(|x|)+\cos(x)+3x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.