Evaluate
\frac{2x^{\frac{3}{2}}}{15}+\frac{16x^{\frac{3}{4}}}{3}+С
Differentiate w.r.t. x
\frac{\sqrt{x}}{5}+\frac{4}{\sqrt[4]{x}}
Share
Copied to clipboard
\int \frac{\sqrt{x}}{5}\mathrm{d}x+\int \frac{4}{\sqrt[4]{x}}\mathrm{d}x
Integrate the sum term by term.
\frac{\int \sqrt{x}\mathrm{d}x}{5}+4\int \frac{1}{\sqrt[4]{x}}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{2x^{\frac{3}{2}}}{15}+4\int \frac{1}{\sqrt[4]{x}}\mathrm{d}x
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify. Multiply \frac{1}{5} times \frac{2x^{\frac{3}{2}}}{3}.
\frac{2x^{\frac{3}{2}}}{15}+\frac{16x^{\frac{3}{4}}}{3}
Rewrite \frac{1}{\sqrt[4]{x}} as x^{-\frac{1}{4}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{-\frac{1}{4}}\mathrm{d}x with \frac{x^{\frac{3}{4}}}{\frac{3}{4}}. Simplify. Multiply 4 times \frac{4x^{\frac{3}{4}}}{3}.
\frac{2x^{\frac{3}{2}}}{15}+\frac{16x^{\frac{3}{4}}}{3}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}