Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int x^{\frac{3}{5}}\mathrm{d}x+\int x^{\frac{7}{2}}\mathrm{d}x+\int 2x^{6}\mathrm{d}x
Integrate the sum term by term.
\int x^{\frac{3}{5}}\mathrm{d}x+\int x^{\frac{7}{2}}\mathrm{d}x+2\int x^{6}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{5x^{\frac{8}{5}}}{8}+\int x^{\frac{7}{2}}\mathrm{d}x+2\int x^{6}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{3}{5}}\mathrm{d}x with \frac{5x^{\frac{8}{5}}}{8}.
\frac{5x^{\frac{8}{5}}}{8}+\frac{2x^{\frac{9}{2}}}{9}+2\int x^{6}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{7}{2}}\mathrm{d}x with \frac{2x^{\frac{9}{2}}}{9}.
\frac{5x^{\frac{8}{5}}}{8}+\frac{2x^{\frac{9}{2}}}{9}+\frac{2x^{7}}{7}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{6}\mathrm{d}x with \frac{x^{7}}{7}. Multiply 2 times \frac{x^{7}}{7}.
\frac{5x^{\frac{8}{5}}}{8}+\frac{2x^{\frac{9}{2}}}{9}+\frac{2x^{7}}{7}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.