Skip to main content
Solve for c
Tick mark Image

Similar Problems from Web Search

Share

4\int \sqrt[3]{3t}\mathrm{d}t=\left(3t\right)^{\frac{4}{2}}tc
Multiply both sides of the equation by 4.
4\int \sqrt[3]{3t}\mathrm{d}t=\left(3t\right)^{2}tc
Divide 4 by 2 to get 2.
4\int \sqrt[3]{3t}\mathrm{d}t=3^{2}t^{2}tc
Expand \left(3t\right)^{2}.
4\int \sqrt[3]{3t}\mathrm{d}t=9t^{2}tc
Calculate 3 to the power of 2 and get 9.
4\int \sqrt[3]{3t}\mathrm{d}t=9t^{3}c
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
9t^{3}c=4\int \sqrt[3]{3t}\mathrm{d}t
Swap sides so that all variable terms are on the left hand side.
9t^{3}c=4\sqrt[3]{3}t^{\frac{4}{3}}+4С
The equation is in standard form.
\frac{9t^{3}c}{9t^{3}}=\frac{\frac{4\times \left(3t\right)^{\frac{4}{3}}}{3}+4С}{9t^{3}}
Divide both sides by 9t^{3}.
c=\frac{\frac{4\times \left(3t\right)^{\frac{4}{3}}}{3}+4С}{9t^{3}}
Dividing by 9t^{3} undoes the multiplication by 9t^{3}.
c=\frac{4\left(\frac{\left(3t\right)^{\frac{4}{3}}}{3}+С\right)}{9t^{3}}
Divide \frac{4\times \left(3t\right)^{\frac{4}{3}}}{3}+4С by 9t^{3}.