Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{-e^{xz}+xze^{xz}}{z^{2}}+С_{3}\right)x-\frac{x^{2}e^{xz}}{z}+\frac{2\left(-e^{xz}+xze^{xz}\right)}{z^{3}}
Simplify.
\int \frac{x^{2}}{2}\mathrm{d}x+\int С_{4}\mathrm{d}x
Integrate the sum term by term.
\frac{\int x^{2}\mathrm{d}x}{2}+\int С_{4}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{6}+\int С_{4}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply \frac{1}{2} times \frac{x^{3}}{3}.
\frac{x^{3}}{6}+С_{4}x
Find the integral of С_{4} using the table of common integrals rule \int a\mathrm{d}x=ax.
\left\{\begin{matrix}\left(\frac{-e^{xz}+xze^{xz}}{z^{2}}+С_{3}\right)x-\frac{x^{2}e^{xz}}{z}+\frac{2\left(-e^{xz}+xze^{xz}\right)}{z^{3}}+С_{7},&\\\frac{x^{3}}{6}+С_{4}x+С_{7},&\end{matrix}\right.
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.