\int \frac { d x } { x ^ { 2 } - 1 } d x
Evaluate
Сdx+\frac{\ln(\frac{|x-1|}{|x+1|})dx}{2}
Differentiate w.r.t. x
\frac{d\left(sign(x-1)x^{2}+xsign(x-1)-x|x-1|+\ln(\frac{|x-1|}{|x+1|})x|x-1|+\ln(\frac{|x-1|}{|x+1|})|x-1|\right)}{2|x-1|\left(x+1\right)}+\frac{С\left(dx+d\right)}{x+1}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}