Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. u
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{3u^{4}}{u}\mathrm{d}u
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int 3u^{3}\mathrm{d}u
Cancel out u in both numerator and denominator.
3\int u^{3}\mathrm{d}u
Factor out the constant using \int af\left(u\right)\mathrm{d}u=a\int f\left(u\right)\mathrm{d}u.
\frac{3u^{4}}{4}
Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int u^{3}\mathrm{d}u with \frac{u^{4}}{4}.
\frac{3u^{4}}{4}+С
If F\left(u\right) is an antiderivative of f\left(u\right), then the set of all antiderivatives of f\left(u\right) is given by F\left(u\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.