Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{3}{x^{6}}\mathrm{d}x+\int -\frac{1}{x^{6}}\mathrm{d}x+\int x\mathrm{d}x
Integrate the sum term by term.
3\int \frac{1}{x^{6}}\mathrm{d}x-\int \frac{1}{x^{6}}\mathrm{d}x+\int x\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{\frac{3}{x^{5}}}{5}-\int \frac{1}{x^{6}}\mathrm{d}x+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{6}}\mathrm{d}x with -\frac{1}{5x^{5}}. Multiply 3 times -\frac{1}{5x^{5}}.
-\frac{\frac{3}{x^{5}}}{5}+\frac{1}{5x^{5}}+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{6}}\mathrm{d}x with -\frac{1}{5x^{5}}. Multiply -1 times -\frac{1}{5x^{5}}.
-\frac{\frac{3}{x^{5}}}{5}+\frac{1}{5x^{5}}+\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
-\frac{2}{5x^{5}}+\frac{x^{2}}{2}
Simplify.
-\frac{2}{5x^{5}}+\frac{x^{2}}{2}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.