Skip to main content
Solve for m
Tick mark Image
Solve for c
Tick mark Image

Similar Problems from Web Search

Share

m\left(1+x\right)^{n}+c=\int \frac{3}{\left(1+x\right)^{5}}\mathrm{d}x
Swap sides so that all variable terms are on the left hand side.
m\left(1+x\right)^{n}=\int \frac{3}{\left(1+x\right)^{5}}\mathrm{d}x-c
Subtract c from both sides.
\left(x+1\right)^{n}m=-c-\frac{3}{4\left(x+1\right)^{4}}+С
The equation is in standard form.
\frac{\left(x+1\right)^{n}m}{\left(x+1\right)^{n}}=\frac{-c-\frac{3}{4\left(x+1\right)^{4}}+С}{\left(x+1\right)^{n}}
Divide both sides by \left(1+x\right)^{n}.
m=\frac{-c-\frac{3}{4\left(x+1\right)^{4}}+С}{\left(x+1\right)^{n}}
Dividing by \left(1+x\right)^{n} undoes the multiplication by \left(1+x\right)^{n}.
m=\frac{С}{\left(x+1\right)^{n}}-\frac{c}{\left(x+1\right)^{n}}-\frac{3\left(x+1\right)^{-n-4}}{4}
Divide -c+С-\frac{3}{4\left(1+x\right)^{4}} by \left(1+x\right)^{n}.