Solve for m
m=\frac{\left(-4c\left(x+1\right)^{4}-3\right)\left(x+1\right)^{-n-4}}{4}+\frac{С}{\left(x+1\right)^{n}}
x>-1\text{ or }\left(Denominator(n)\text{bmod}2=1\text{ and }x<-1\right)
Solve for c
c=-m\left(x+1\right)^{n}-\frac{3}{4\left(x+1\right)^{4}}+С
x>-1\text{ or }\left(Denominator(n)\text{bmod}2=1\text{ and }x<-1\right)
Share
Copied to clipboard
m\left(1+x\right)^{n}+c=\int \frac{3}{\left(1+x\right)^{5}}\mathrm{d}x
Swap sides so that all variable terms are on the left hand side.
m\left(1+x\right)^{n}=\int \frac{3}{\left(1+x\right)^{5}}\mathrm{d}x-c
Subtract c from both sides.
\left(x+1\right)^{n}m=-c-\frac{3}{4\left(x+1\right)^{4}}+С
The equation is in standard form.
\frac{\left(x+1\right)^{n}m}{\left(x+1\right)^{n}}=\frac{-c-\frac{3}{4\left(x+1\right)^{4}}+С}{\left(x+1\right)^{n}}
Divide both sides by \left(1+x\right)^{n}.
m=\frac{-c-\frac{3}{4\left(x+1\right)^{4}}+С}{\left(x+1\right)^{n}}
Dividing by \left(1+x\right)^{n} undoes the multiplication by \left(1+x\right)^{n}.
m=\frac{С}{\left(x+1\right)^{n}}-\frac{c}{\left(x+1\right)^{n}}-\frac{3\left(x+1\right)^{-n-4}}{4}
Divide -c+С-\frac{3}{4\left(1+x\right)^{4}} by \left(1+x\right)^{n}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}