Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{2\times 1.9\times 10^{-18}-2\times 6.62\times 10^{-18}\times 6}{9.1\times 10^{-31}}\mathrm{d}x
To multiply powers of the same base, add their exponents. Add -32 and 14 to get -18.
\int \frac{3.8\times 10^{-18}-2\times 6.62\times 10^{-18}\times 6}{9.1\times 10^{-31}}\mathrm{d}x
Multiply 2 and 1.9 to get 3.8.
\int \frac{3.8\times \frac{1}{1000000000000000000}-2\times 6.62\times 10^{-18}\times 6}{9.1\times 10^{-31}}\mathrm{d}x
Calculate 10 to the power of -18 and get \frac{1}{1000000000000000000}.
\int \frac{\frac{19}{5000000000000000000}-2\times 6.62\times 10^{-18}\times 6}{9.1\times 10^{-31}}\mathrm{d}x
Multiply 3.8 and \frac{1}{1000000000000000000} to get \frac{19}{5000000000000000000}.
\int \frac{\frac{19}{5000000000000000000}-13.24\times 10^{-18}\times 6}{9.1\times 10^{-31}}\mathrm{d}x
Multiply 2 and 6.62 to get 13.24.
\int \frac{\frac{19}{5000000000000000000}-13.24\times \frac{1}{1000000000000000000}\times 6}{9.1\times 10^{-31}}\mathrm{d}x
Calculate 10 to the power of -18 and get \frac{1}{1000000000000000000}.
\int \frac{\frac{19}{5000000000000000000}-\frac{331}{25000000000000000000}\times 6}{9.1\times 10^{-31}}\mathrm{d}x
Multiply 13.24 and \frac{1}{1000000000000000000} to get \frac{331}{25000000000000000000}.
\int \frac{\frac{19}{5000000000000000000}-\frac{993}{12500000000000000000}}{9.1\times 10^{-31}}\mathrm{d}x
Multiply \frac{331}{25000000000000000000} and 6 to get \frac{993}{12500000000000000000}.
\int \frac{-\frac{1891}{25000000000000000000}}{9.1\times 10^{-31}}\mathrm{d}x
Subtract \frac{993}{12500000000000000000} from \frac{19}{5000000000000000000} to get -\frac{1891}{25000000000000000000}.
\int \frac{-\frac{1891}{25000000000000000000}}{9.1\times \frac{1}{10000000000000000000000000000000}}\mathrm{d}x
Calculate 10 to the power of -31 and get \frac{1}{10000000000000000000000000000000}.
\int \frac{-\frac{1891}{25000000000000000000}}{\frac{91}{100000000000000000000000000000000}}\mathrm{d}x
Multiply 9.1 and \frac{1}{10000000000000000000000000000000} to get \frac{91}{100000000000000000000000000000000}.
\int -\frac{1891}{25000000000000000000}\times \frac{100000000000000000000000000000000}{91}\mathrm{d}x
Divide -\frac{1891}{25000000000000000000} by \frac{91}{100000000000000000000000000000000} by multiplying -\frac{1891}{25000000000000000000} by the reciprocal of \frac{91}{100000000000000000000000000000000}.
\int -\frac{7564000000000000}{91}\mathrm{d}x
Multiply -\frac{1891}{25000000000000000000} and \frac{100000000000000000000000000000000}{91} to get -\frac{7564000000000000}{91}.
-\frac{7564000000000000x}{91}
Find the integral of -\frac{7564000000000000}{91} using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{7564000000000000x}{91}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.