Evaluate
\frac{5\sqrt{3}x}{147}+С
Differentiate w.r.t. x
\frac{5 \sqrt{3}}{147} = 0.0589132927744516
Share
Copied to clipboard
\int \frac{15}{21\sqrt{196-7^{2}}}\mathrm{d}x
Calculate 14 to the power of 2 and get 196.
\int \frac{15}{21\sqrt{196-49}}\mathrm{d}x
Calculate 7 to the power of 2 and get 49.
\int \frac{15}{21\sqrt{147}}\mathrm{d}x
Subtract 49 from 196 to get 147.
\int \frac{15}{21\times 7\sqrt{3}}\mathrm{d}x
Factor 147=7^{2}\times 3. Rewrite the square root of the product \sqrt{7^{2}\times 3} as the product of square roots \sqrt{7^{2}}\sqrt{3}. Take the square root of 7^{2}.
\int \frac{15}{147\sqrt{3}}\mathrm{d}x
Multiply 21 and 7 to get 147.
\int \frac{15\sqrt{3}}{147\left(\sqrt{3}\right)^{2}}\mathrm{d}x
Rationalize the denominator of \frac{15}{147\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\int \frac{15\sqrt{3}}{147\times 3}\mathrm{d}x
The square of \sqrt{3} is 3.
\int \frac{5\sqrt{3}}{3\times 49}\mathrm{d}x
Cancel out 3 in both numerator and denominator.
\int \frac{5\sqrt{3}}{147}\mathrm{d}x
Multiply 3 and 49 to get 147.
\frac{5\sqrt{3}}{147}x
Find the integral of \frac{5\sqrt{3}}{147} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{5\sqrt{3}x}{147}
Simplify.
\frac{5\sqrt{3}x}{147}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}