Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{15}{21\sqrt{196-7^{2}}}\mathrm{d}x
Calculate 14 to the power of 2 and get 196.
\int \frac{15}{21\sqrt{196-49}}\mathrm{d}x
Calculate 7 to the power of 2 and get 49.
\int \frac{15}{21\sqrt{147}}\mathrm{d}x
Subtract 49 from 196 to get 147.
\int \frac{15}{21\times 7\sqrt{3}}\mathrm{d}x
Factor 147=7^{2}\times 3. Rewrite the square root of the product \sqrt{7^{2}\times 3} as the product of square roots \sqrt{7^{2}}\sqrt{3}. Take the square root of 7^{2}.
\int \frac{15}{147\sqrt{3}}\mathrm{d}x
Multiply 21 and 7 to get 147.
\int \frac{15\sqrt{3}}{147\left(\sqrt{3}\right)^{2}}\mathrm{d}x
Rationalize the denominator of \frac{15}{147\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\int \frac{15\sqrt{3}}{147\times 3}\mathrm{d}x
The square of \sqrt{3} is 3.
\int \frac{5\sqrt{3}}{3\times 49}\mathrm{d}x
Cancel out 3 in both numerator and denominator.
\int \frac{5\sqrt{3}}{147}\mathrm{d}x
Multiply 3 and 49 to get 147.
\frac{5\sqrt{3}}{147}x
Find the integral of \frac{5\sqrt{3}}{147} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{5\sqrt{3}x}{147}
Simplify.
\frac{5\sqrt{3}x}{147}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.