Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{1}{4}\times 4+\frac{1}{4}\left(-1\right)x\mathrm{d}x
Use the distributive property to multiply \frac{1}{4} by 4-x.
\int 1+\frac{1}{4}\left(-1\right)x\mathrm{d}x
Cancel out 4 and 4.
\int 1-\frac{1}{4}x\mathrm{d}x
Multiply \frac{1}{4} and -1 to get -\frac{1}{4}.
\int 1\mathrm{d}x+\int -\frac{x}{4}\mathrm{d}x
Integrate the sum term by term.
\int 1\mathrm{d}x-\frac{\int x\mathrm{d}x}{4}
Factor out the constant in each of the terms.
x-\frac{\int x\mathrm{d}x}{4}
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
x-\frac{x^{2}}{8}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -\frac{1}{4} times \frac{x^{2}}{2}.
x-\frac{x^{2}}{8}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.