Solve for p
p=\frac{u}{2\mu ^{2}}+С
\mu \neq 0
Solve for μ
\left\{\begin{matrix}\mu =\sqrt{-\frac{u}{С-2p}}\text{; }\mu =-\sqrt{-\frac{u}{С-2p}}\text{, }&\left(С\leq 2p\text{ and }p\neq \frac{С_{1}}{2}\text{ and }u>0\text{ and }p\geq С_{2}\right)\text{ or }\left(С_{3}\geq 2p\text{ and }p\neq \frac{С_{4}}{2}\text{ and }u<0\text{ and }p\leq С_{5}\right)\\\mu \neq 0\text{, }&p=\frac{С}{2}\text{ and }u=0\end{matrix}\right.
Share
Copied to clipboard
2\int \frac{1}{\mu ^{2}}\mathrm{d}u=4p
Multiply both sides of the equation by 2.
4p=2\int \frac{1}{\mu ^{2}}\mathrm{d}u
Swap sides so that all variable terms are on the left hand side.
4p=2С+\frac{2u}{\mu ^{2}}
The equation is in standard form.
\frac{4p}{4}=\frac{\frac{2u}{\mu ^{2}}+С}{4}
Divide both sides by 4.
p=\frac{\frac{2u}{\mu ^{2}}+С}{4}
Dividing by 4 undoes the multiplication by 4.
p=\frac{u}{2\mu ^{2}}+С
Divide С+\frac{2u}{\mu ^{2}} by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}