Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\frac{1+\frac{\sin(y)}{\cos(y)}}{y}x
Find the integral of \frac{1+\frac{\sin(y)}{\cos(y)}}{y} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{\left(1+\frac{\sin(y)}{\cos(y)}\right)x}{y}
Simplify.
\frac{\left(1+\frac{\sin(y)}{\cos(y)}\right)x}{y}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.