Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\int \frac{1}{x^{\frac{3}{2}}}\mathrm{d}x}{5}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
-\frac{\frac{2}{\sqrt{x}}}{5}
Rewrite \frac{1}{x^{\frac{3}{2}}} as x^{-\frac{3}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{-\frac{3}{2}}\mathrm{d}x with \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}}. Simplify and convert from exponential to radical form.
-\frac{2}{5\sqrt{x}}
Simplify.
-\frac{2}{5\sqrt{x}}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.