Evaluate
\frac{8y^{6}x^{9}}{9}+С
Differentiate w.r.t. x
8y^{6}x^{8}
Share
Copied to clipboard
\int \frac{2x^{4}y^{4}\times 4y^{4}\times 3x}{3x^{-3}y^{2}}\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\int \frac{2x^{5}y^{4}\times 4y^{4}\times 3}{3x^{-3}y^{2}}\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
\int \frac{2x^{5}y^{8}\times 4\times 3}{3x^{-3}y^{2}}\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
\int \frac{2\times 4x^{5}y^{6}}{x^{-3}}\mathrm{d}x
Cancel out 3y^{2} in both numerator and denominator.
\int 2\times 4y^{6}x^{8}\mathrm{d}x
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\int 8y^{6}x^{8}\mathrm{d}x
Multiply 2 and 4 to get 8.
8y^{6}\int x^{8}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
8y^{6}\times \frac{x^{9}}{9}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{8}\mathrm{d}x with \frac{x^{9}}{9}.
\frac{8y^{6}x^{9}}{9}
Simplify.
\frac{8y^{6}x^{9}}{9}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}