Skip to main content
Evaluate
Tick mark Image

Share

\frac{isc\sin(\sqrt{4})}{\cos(\sqrt{4})\left(n+1\right)}u
Find the integral of \frac{isc\sin(\sqrt{4})}{\cos(\sqrt{4})\left(n+1\right)} using the table of common integrals rule \int a\mathrm{d}u=au.
\frac{isc\sin(2)u}{\cos(2)\left(n+1\right)}
Simplify.
\begin{matrix}\frac{isc\sin(2)u}{\cos(2)\left(n+1\right)}+С_{3},&\end{matrix}
If F\left(u\right) is an antiderivative of f\left(u\right), then the set of all antiderivatives of f\left(u\right) is given by F\left(u\right)+C. Therefore, add the constant of integration C\in \mathrm{C} to the result.