Solve for j
\left\{\begin{matrix}j=-\frac{2i\sin(t)+kt^{2}}{4\cos(t)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }t=\pi n_{1}+\frac{\pi }{2}\\j\in \mathrm{C}\text{, }&k=-\frac{2i\sin(t)}{t^{2}}\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }t=\frac{\pi \left(2n_{1}+1\right)}{2}\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=-\frac{2\left(2j\cos(t)+i\sin(t)\right)}{t^{2}}\text{, }&t\neq 0\\k\in \mathrm{C}\text{, }&t=0\text{ and }j=0\end{matrix}\right.
Share
Copied to clipboard
2i\sin(t)+4\cos(t)j+t^{2}k=0
Multiply t and t to get t^{2}.
4\cos(t)j+t^{2}k=-2i\sin(t)
Subtract 2i\sin(t) from both sides. Anything subtracted from zero gives its negation.
4\cos(t)j=-2i\sin(t)-t^{2}k
Subtract t^{2}k from both sides.
4\cos(t)j=-2i\sin(t)-kt^{2}
The equation is in standard form.
\frac{4\cos(t)j}{4\cos(t)}=\frac{-2i\sin(t)-kt^{2}}{4\cos(t)}
Divide both sides by 4\cos(t).
j=\frac{-2i\sin(t)-kt^{2}}{4\cos(t)}
Dividing by 4\cos(t) undoes the multiplication by 4\cos(t).
j=-\frac{2i\sin(t)+kt^{2}}{4\cos(t)}
Divide -2i\sin(t)-t^{2}k by 4\cos(t).
2i\sin(t)+4\cos(t)j+t^{2}k=0
Multiply t and t to get t^{2}.
4\cos(t)j+t^{2}k=-2i\sin(t)
Subtract 2i\sin(t) from both sides. Anything subtracted from zero gives its negation.
t^{2}k=-2i\sin(t)-4\cos(t)j
Subtract 4\cos(t)j from both sides.
t^{2}k=-4j\cos(t)-2i\sin(t)
The equation is in standard form.
\frac{t^{2}k}{t^{2}}=\frac{2\left(-2j\cos(t)-i\sin(t)\right)}{t^{2}}
Divide both sides by t^{2}.
k=\frac{2\left(-2j\cos(t)-i\sin(t)\right)}{t^{2}}
Dividing by t^{2} undoes the multiplication by t^{2}.
k=-\frac{2\left(2j\cos(t)+i\sin(t)\right)}{t^{2}}
Divide 2\left(-i\sin(t)-2\cos(t)j\right) by t^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}