Skip to main content
Solve for a
Tick mark Image
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

\gamma ^{2}=ar\cos(\frac{3025+76^{2}+93812}{2\times 55\times 76})
Calculate 55 to the power of 2 and get 3025.
\gamma ^{2}=ar\cos(\frac{3025+5776+93812}{2\times 55\times 76})
Calculate 76 to the power of 2 and get 5776.
\gamma ^{2}=ar\cos(\frac{8801+93812}{2\times 55\times 76})
Add 3025 and 5776 to get 8801.
\gamma ^{2}=ar\cos(\frac{102613}{2\times 55\times 76})
Add 8801 and 93812 to get 102613.
\gamma ^{2}=ar\cos(\frac{102613}{110\times 76})
Multiply 2 and 55 to get 110.
\gamma ^{2}=ar\cos(\frac{102613}{8360})
Multiply 110 and 76 to get 8360.
ar\cos(\frac{102613}{8360})=\gamma ^{2}
Swap sides so that all variable terms are on the left hand side.
\cos(\frac{102613}{8360})ra=\gamma ^{2}
The equation is in standard form.
\frac{\cos(\frac{102613}{8360})ra}{\cos(\frac{102613}{8360})r}=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})r}
Divide both sides by r\cos(\frac{102613}{8360}).
a=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})r}
Dividing by r\cos(\frac{102613}{8360}) undoes the multiplication by r\cos(\frac{102613}{8360}).
\gamma ^{2}=ar\cos(\frac{3025+76^{2}+93812}{2\times 55\times 76})
Calculate 55 to the power of 2 and get 3025.
\gamma ^{2}=ar\cos(\frac{3025+5776+93812}{2\times 55\times 76})
Calculate 76 to the power of 2 and get 5776.
\gamma ^{2}=ar\cos(\frac{8801+93812}{2\times 55\times 76})
Add 3025 and 5776 to get 8801.
\gamma ^{2}=ar\cos(\frac{102613}{2\times 55\times 76})
Add 8801 and 93812 to get 102613.
\gamma ^{2}=ar\cos(\frac{102613}{110\times 76})
Multiply 2 and 55 to get 110.
\gamma ^{2}=ar\cos(\frac{102613}{8360})
Multiply 110 and 76 to get 8360.
ar\cos(\frac{102613}{8360})=\gamma ^{2}
Swap sides so that all variable terms are on the left hand side.
\cos(\frac{102613}{8360})ar=\gamma ^{2}
The equation is in standard form.
\frac{\cos(\frac{102613}{8360})ar}{\cos(\frac{102613}{8360})a}=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})a}
Divide both sides by a\cos(\frac{102613}{8360}).
r=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})a}
Dividing by a\cos(\frac{102613}{8360}) undoes the multiplication by a\cos(\frac{102613}{8360}).