Solve for I
\left\{\begin{matrix}I=\frac{k-R}{\gamma }\text{, }&k\neq R\text{ and }\gamma \neq 0\\I\neq 0\text{, }&\gamma =0\text{ and }k=R\end{matrix}\right.
Solve for R
R=k-I\gamma
I\neq 0
Share
Copied to clipboard
\gamma I=k-R
Variable I cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by I.
\frac{\gamma I}{\gamma }=\frac{k-R}{\gamma }
Divide both sides by \gamma .
I=\frac{k-R}{\gamma }
Dividing by \gamma undoes the multiplication by \gamma .
I=\frac{k-R}{\gamma }\text{, }I\neq 0
Variable I cannot be equal to 0.
\gamma I=k-R
Multiply both sides of the equation by I.
k-R=\gamma I
Swap sides so that all variable terms are on the left hand side.
-R=\gamma I-k
Subtract k from both sides.
-R=I\gamma -k
The equation is in standard form.
\frac{-R}{-1}=\frac{I\gamma -k}{-1}
Divide both sides by -1.
R=\frac{I\gamma -k}{-1}
Dividing by -1 undoes the multiplication by -1.
R=k-I\gamma
Divide \gamma I-k by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}