Solve for R
R=k-3\gamma
Solve for k
k=R+3\gamma
Share
Copied to clipboard
\gamma =\frac{1}{3}k-\frac{1}{3}R
Divide each term of k-R by 3 to get \frac{1}{3}k-\frac{1}{3}R.
\frac{1}{3}k-\frac{1}{3}R=\gamma
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{3}R=\gamma -\frac{1}{3}k
Subtract \frac{1}{3}k from both sides.
-\frac{1}{3}R=-\frac{k}{3}+\gamma
The equation is in standard form.
\frac{-\frac{1}{3}R}{-\frac{1}{3}}=\frac{-\frac{k}{3}+\gamma }{-\frac{1}{3}}
Multiply both sides by -3.
R=\frac{-\frac{k}{3}+\gamma }{-\frac{1}{3}}
Dividing by -\frac{1}{3} undoes the multiplication by -\frac{1}{3}.
R=k-3\gamma
Divide \gamma -\frac{k}{3} by -\frac{1}{3} by multiplying \gamma -\frac{k}{3} by the reciprocal of -\frac{1}{3}.
\gamma =\frac{1}{3}k-\frac{1}{3}R
Divide each term of k-R by 3 to get \frac{1}{3}k-\frac{1}{3}R.
\frac{1}{3}k-\frac{1}{3}R=\gamma
Swap sides so that all variable terms are on the left hand side.
\frac{1}{3}k=\gamma +\frac{1}{3}R
Add \frac{1}{3}R to both sides.
\frac{1}{3}k=\frac{R}{3}+\gamma
The equation is in standard form.
\frac{\frac{1}{3}k}{\frac{1}{3}}=\frac{\frac{R}{3}+\gamma }{\frac{1}{3}}
Multiply both sides by 3.
k=\frac{\frac{R}{3}+\gamma }{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
k=R+3\gamma
Divide \gamma +\frac{R}{3} by \frac{1}{3} by multiplying \gamma +\frac{R}{3} by the reciprocal of \frac{1}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}