Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(x\left(900-120x+4x^{2}\right))
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(30-2x\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(900x-120x^{2}+4x^{3})
Use the distributive property to multiply x by 900-120x+4x^{2}.
900x^{1-1}+2\left(-120\right)x^{2-1}+3\times 4x^{3-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
900x^{0}+2\left(-120\right)x^{2-1}+3\times 4x^{3-1}
Subtract 1 from 1.
900x^{0}-240x^{2-1}+3\times 4x^{3-1}
Multiply 2 times -120.
900x^{0}-240x^{1}+3\times 4x^{3-1}
Subtract 1 from 2.
900x^{0}-240x^{1}+12x^{3-1}
Multiply 2 times -120.
900x^{0}-240x^{1}+12x^{2}
Subtract 1 from 3.
900x^{0}-240x+12x^{2}
For any term t, t^{1}=t.
900\times 1-240x+12x^{2}
For any term t except 0, t^{0}=1.
900-240x+12x^{2}
For any term t, t\times 1=t and 1t=t.